Exercise 7

Find the series solution for the following inhomogeneous second order ODEs:

$$
u^{\prime \prime}-x u=\cos x
$$

Solution

Because $x=0$ is an ordinary point, the series solution of this differential equation will be of the form,

$$
u(x)=\sum_{n=0}^{\infty} a_{n} x^{n} .
$$

To determine the coefficients, a_{n}, we will have to plug the form into the ODE. Before we can do so, though, we must write expressions for u^{\prime} and $u^{\prime \prime}$.

$$
u(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \quad \rightarrow \quad u^{\prime}(x)=\sum_{n=0}^{\infty} n a_{n} x^{n-1} \quad \rightarrow \quad u^{\prime \prime}(x)=\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}
$$

Also, the Taylor series of $\cos x$ about $x=0$ is

$$
\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n} .
$$

Now we substitute these series into the ODE.

$$
\begin{gathered}
u^{\prime \prime}-x u=\cos x \\
\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}-x \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n} \\
\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=0}^{\infty} a_{n} x^{n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}
\end{gathered}
$$

The first series on the left is zero for $n=0$ and $n=1$, so we can start the sum from $n=2$.

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=0}^{\infty} a_{n} x^{n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}
$$

Since we want to combine the series on the left, we want the first series to start from $n=0$. We can start the first at $n=0$ as long as we replace n with $n+2$.

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=0}^{\infty} a_{n} x^{n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}
$$

To get x^{n+1} in the first series, write out the first term and change n to $n+1$. Do the same for the series on the right side.

$$
2 a_{2}+\sum_{n=0}^{\infty}(n+3)(n+2) a_{n+3} x^{n+1}-\sum_{n=0}^{\infty} a_{n} x^{n+1}=1+\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2 n+2)!} x^{2 n+2}
$$

The point of doing this is so that x^{n+1} is present in each term so we can combine the series.

$$
2 a_{2}+\sum_{n=0}^{\infty}\left[(n+3)(n+2) a_{n+3} x^{n+1}-a_{n} x^{n+1}\right]=1+\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2 n+2)!} x^{2 n+2}
$$

Factor the left side.

$$
2 a_{2}+\sum_{n=0}^{\infty}\left[(n+3)(n+2) a_{n+3}-a_{n}\right] x^{n+1}=1+\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2 n+2)!} x^{2 n+2}
$$

We can split the series on the left into two: one for when n is even ($n=2 k$) and another for when n is odd ($n=2 k+1$).

$$
\begin{aligned}
2 a_{2}+\sum_{k=0}^{\infty}[(2 k+3)(2 k+2) & \left.a_{2 k+3}-a_{2 k}\right] x^{2 k+1} \\
& +\sum_{k=0}^{\infty}\left[(2 k+4)(2 k+3) a_{2 k+4}-a_{2 k+1}\right] x^{2 k+2}=1+\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2 n+2)!} x^{2 n+2}
\end{aligned}
$$

Note that k and n are just dummy indices, so we can put $n=k$ on the right side. Now we match coefficients on both sides.

$$
\begin{aligned}
& 2 a_{2}=1 \\
& (2 k+3)(2 k+2) a_{2 k+3}-a_{2 k}=0 \\
& (2 k+4)(2 k+3) a_{2 k+4}-a_{2 k+1}=\frac{(-1)^{n+1}}{(2 n+2)!}
\end{aligned}
$$

Now that we know the recurrence relations, we can determine a_{n}.

$$
\begin{array}{rrll}
& 2 a_{2}=1 & \rightarrow & a_{2}=\frac{1}{2} \\
n=0: & -a_{0}+6 a_{3}=0 & \rightarrow & a_{3}=\frac{1}{6} a_{0} \\
n=1: & -a_{1}+12 a_{4}=-\frac{1}{2} & \rightarrow & a_{4}=\frac{1}{24}\left(-1+2 a_{1}\right) \\
n=2: & -a_{2}+20 a_{5}=0 & \rightarrow & a_{5}=\frac{1}{40} \\
n=3: & -a_{3}+30 a_{6}=\frac{1}{24} & \rightarrow & a_{6}=\frac{1}{720}\left(1+4 a_{0}\right) \\
n=4: & -a_{4}+42 a_{7}=0 & \rightarrow & a_{7}=\frac{1}{1008}\left(-1+2 a_{1}\right) \\
n=5: & -a_{5}+56 a_{8}=-\frac{1}{720} & \rightarrow & a_{8}=\frac{17}{40320}
\end{array}
$$

Therefore,

$$
\begin{aligned}
u(x)=a_{0}\left(1+\frac{1}{6} x^{3}+\frac{1}{180} x^{6}+\cdots\right) & +a_{1}\left(x+\frac{1}{12} x^{4}+\frac{1}{504} x^{7}+\cdots\right) \\
& +\frac{1}{2} x^{2}-\frac{1}{24} x^{4}+\frac{1}{40} x^{5}+\frac{1}{720} x^{6}-\frac{1}{1008} x^{7}+\frac{17}{40320} x^{8}+\cdots,
\end{aligned}
$$

where a_{0} and a_{1} are arbitrary constants.
[TYPO: $(1 / 40) x^{5}$ is repeated in the answer at the back of the book.]

